High Pressure Oxygen Generation for Future Exploration Missions, Phase II

Completed Technology Project (2015 - 2017)

Project Introduction

The proposed innovation is the development of a cathode feed electrolysis cell stack capable of generating 3600 psi oxygen at a relevant scale for future exploration missions. This innovation is relevant to NASA's need for compact, quiet, efficient, and long-lived sources of pressurized oxygen for atmosphere revitalization (AR) and EVA oxygen storage recharge. Present AR equipment aboard International Space Station (ISS) consists of power-intensive, noisy compressors that have service lives less than 2 years. Proton's proposed electrolyzer stack will eliminate the need for these compressors, by developing a cell stack that can produce 3600 psia oxygen via electrochemical compression. This innovation results in a quiet, efficient, solid state device with no internal moving parts to service or fail.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Proton Energy	Lead	Industry	Wallingford,
Systems, Inc.	Organization		Connecticut
Marshall Space Flight Center(MSFC)	Supporting	NASA	Huntsville,
	Organization	Center	Alabama

High Pressure Oxygen Generation for Future Exploration Missions, Phase II

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

High Pressure Oxygen Generation for Future Exploration Missions, Phase II

Completed Technology Project (2015 - 2017)

Primary U.S. Work Locations Alabama Connecticut

Images

Briefing ChartHigh Pressure Oxygen Generation for Future Exploration Missions Briefing Chart (https://techport.nasa.gov/imag e/128509)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Proton Energy Systems, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

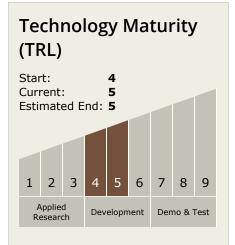
Carlos Torrez

Principal Investigator:

Luke Dalton

Co-Investigator:

Luke Dalton



Small Business Innovation Research/Small Business Tech Transfer

High Pressure Oxygen Generation for Future Exploration Missions, Phase II

Completed Technology Project (2015 - 2017)

Technology Areas

Primary:

- TX06 Human Health, Life Support, and Habitation Systems
 - ─ TX06.1 Environmental Control & Life Support Systems (ECLSS) and Habitation Systems
 - ☐ TX06.1.1 Atmosphere Revitalization

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

